こんにちは。質量分析屋の髙橋です。前回投稿した“LC/MSにおける試料調製や前処理で重要なポイント”について、この記事の後半で描いている“ブランク試料のTICクロマトグラムで観測されたピークは、必ずしもブランク試料由来ではない可能性がある”について、今回は他の可能性を考えて見たいと思います。経験上、二つの可能性があると思います。

 

1.試料導入系の汚染オートインジェクターやマニュアルインジェクターなどの試料導入系が、以前測定した試料によって汚染されている場合、それが試料注入の度に混入し、あたかも試料に含まれていたかの様な挙動を示します。

2.LCの水系溶離液の汚染LC/MSに用いられるLCの8割以上は、逆相分配クロマトグラフィーです。そして、その多くはグラジエント溶離が用いられます。2の可能性は、逆相でグラジエント溶離を行う場合に特に起こり易いです。この条件では、グラジエントの初期状態は水系溶媒がリッチで、カラムの平衡化を行って試料を注入します。水系溶離液が汚染されていると、平衡化の間に溶離液中の成分がカラム先端にトラップされ、グラジエント溶離によってそれが溶出されてきます。そして、その成分があたかも試料中に含まれていたかの様に振舞います。夾雑ピークの原因物質が“ブランク試料に含まれている”か“試料導入系の汚染”か“LCの水系溶離液の汚染”か、を見極める方法は以下です。

 

a. ブランク試料の注入量を変えて見る注入量を変えて夾雑ピークの強度が変わればブランク試料由来、変わらなければ“試料導入系の汚染”か“LCの水系溶離液の汚染”が原因です。

b. 試料を注入せずグラジエントプログラムだけ走らせて見るこれはLCシステムによっては出来ない場合がありますが、もし可能であれば、これをやってみて夾雑ピークが出現すれば“LCの水系溶離液の汚染”が原因である可能性が高いです。

c. 平衡化の時間を変えて見るbの実験をする際、水系溶離液による平衡化時間を変えて見ます。それに伴って夾雑ピークの強度が変化するようなら、“LCの水系溶離液の汚染”が原因である事は先ず間違いないでしょう。

この記事の続きは会員限定です